
RESEARCH Volume 11 Issue 1 | Spring 2018
La

tin
x

St
ud

ie
s

36 | the harvard undergraduate research journal

Robbins, Liz and Nadia Rodriguez. (2017). The Gang Murders in the Suburbs. 
The New York Times. https://www.nytimes.com/2017/07/12/nyregion/ms-
13-murders-long-island.html?_r=0.

Rodriguez, Ana Patricia. (2009). Dividing the Isthmus: Central American 
Transnational Histories, Literatures, and Cultures. 168-171. 176. 5. 

Salgado, Yesika. (2017). Corázon, 4. 63.
Stanley, William. (1984). Economic Migrants or Refugees from Violence? A 

Time-Series Analysis of Salvadoran Migration to the United States. Latin 
American Research Review 22, 134. 144.  

Trump, Donald. (2017). Remarks by President Trump to Law Enforce-
ment Officials on MS-13. White House transcript of remarks. 
h t t p s : // w w w.w h i t e h o u s e . g o v/ t h e - p r e s s - o f f i c e / 2 017/ 0 7/ 2 8 /
remarks-president-trump-law-enforcement-officials-ms-13.

U.S. Immigration and Customs Enforcement. (2017). Fiscal Year 2017 ICE 
Enforcement and Removal Operations Report. 4. https://www.ice.gov/sites/
default/files/documents/Report/2017/iceEndOfYearFY2017.pdf. 

Ward, T.W. (2013). Gangsters Without Borders: An Ethnography of a Salva-
doran Street Gang. 3, 13. 

Zamora, Javier. (2017). Unaccompanied. 9-10. 
Zamora, Javier. Unaccompanied. Port Townsend: Copper Canyon Press, 2017.

RESEARCHVolume 11 Issue 1 | Spring 2018
Com

puter
Science

 www.thur j .org  | 37

Introduction

Computational Humor: What’s At Stake

With recent advance in machine learning and data science, 
more and more fields that were once sealed off from computational 
approaches are opening up for the touch of artificial intelligence. 
Humor is one such field. Notoriously difficult to analyze, assess 
and rate even for the human agent, it provides a challenge for the 
adventurous computer scientists who dare to take it on. Literature 
that provides analysis of the roots and causes of humor has been 
circulating at least since ancient Greece, with the following major 
theories presented to date10:

1. Superiority theory. The superiority theory of humor states 
that the feeling of selfcontainment associated with a sense of superi-
ority in our status or well being over others is what makes us laugh. 
In other words, we laugh when we are better off than a fellow human, 
and our assertion of this fact. Notable philosophers proposed and 
bolstered this assumption, an act which did not help the status of 
comedians and humor: they were deemed as agents of evil mockery 
and pride. Among the famous supporters of this view were Plato, 
Descartes, Hobbes and the Bible.

2. Incongruity theory. Scholars endorsed a more modern and 
positive approach to humor was endorsed mostly since the renais-
sance. This reading of humor claims that what creates a comedic 
effect is a “benign violation of expectation”8. Recent research have 
shown that many types of laugh outbursts could be explained by 

their surprising nature. Whenever an unexpected event happened, 
that turned out to be harmless – amusement was afoot. Two condi-
tions had to be met to create humor:

(a) an incongruity, which first took an audience by surprise, 
perhaps even a tense, fearful one.

(b) a resolution of the contradiction of expectation had to 
happen, followed by relief, which had a vocal manifestation, of the 
form of “Ha Ha”, accompanied with an upward twitch of the lips.

Among the supporters of this understanding are James Beattie, 
Immanuel Kant, Arthur Schopenhauer and Søren Kierkegaard.

3. Stress release theory. Along the lines of the relief theme 
proposed by the “incongruists”, Sigmond Freud proposed a similar 
reading into humor, with a typical Freudian twist. To Freud, humor 
was a result of pent up stresses, many of whom related to societally 
taboo subjects, such as sexuality and violence, that are released 
when a joke teller refers to them directly or as an innuendo. By 
“opening for a conversation” a subject the listener has been putting 
active effort to suppress, a joke can signify a promise of relief, an 
appeasing statement, an “it’s OK” signal. It tells the listener oth-
ers are contemplating and suppressing the same topics, and offers 
an opportunity to vent some of these accumulated suppressions. 
Lord Shaftesbury, Herbert Spencer and John Dewey also adopted 
a biological-psychological reading into humor as a stress reliever.

4. Mock-A ression play theory. From a biological-evolution-
ary point of view, laughter can be explained by its predecessors in 
primates. Observations by evolutionary biologists revealed that 
primates laugh too, usually during mock-aggression activity within 
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This thesis aims to present a procedure for generating humorous 4-word analogies, in the form of 
humans : water :: Texans : barbecue. 

By using a neural word embedding, we created a system that can construct 4-tuples of words of a comedic nature, based on 
an initial pool of funny analogies, written and rated by Amazon Mechanical Turk (AMT) users. Our procedure involved 
4 main steps:
 1.  Generating a collection of “funny words”, by classifying with a support vector machine (SVM) words from   
 the embedding that are similar to words used in the analogies written by AMT users.
 2.  Generating funny pairs of words taken from the collection of funny words, and classifying them to obtain 
 more likely funny words. Negative examples were randomly generated pairs from the embedding, and positive 
 examples were pairs from the AMT users’ analogies.
 3.  Generating matchings of generated pairs by another SVM classifier. Negative examples were random 4-tuples 
 of words from the embedding; positive examples were complete humorous analogies obtained from AMT.
Our method was shown to perform significantly better than the following baselines:
 •  random 4 tuples of words from the embedding
 •  random 4 tuples of words from the “funny pool” of words we classified
 •  random matching of funny pairs we generated.
We assessed the performance in terms of the mean scores obtained per analogy in each baseline, and in terms of maxi-
mum funniness score obtained in each category (7/10 fully-computer generated, 5/10 random match of pairs, 4/10 random 
”funny” words and 3/10 random words). To further establish the usefulness of neural word embeddings to capture humor 
and generate comedic structures, we introduced a ”funniness” score prediction which showed positive correlation with 
actual ratings obtained from AMT users, and performed a Turing test, in which 35% of computer-generated analogies 
were mistaken to be human made.
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a family of chimpanzees. Mock-aggression activity can be seen when 
members of the same family of monkeys are engaged in playing, 
that to an outside observer might look like a violent confrontation. 
When two or more such primates are “fighting” in this way, like 
children who are engaged in a mock-fight, they seem to be train-
ing for actual potential future conflicts, yet need to signify to each 
other that they are not being truly aggressive. The chosen signals 
are usually a quick, fast breath of air coming from the diaphragm 
and a movement of the mouth, in which the front teeth are exposed 
and the lips are drawn back and upwards. The sound this mock-
aggressive signal is making is “ah ah”, which resembles human 
laughter, only in a backward direction: primates’ diaphragm is 
set up a little differently than that of humans (or rather the other 
way around?), to allow for appropriate locomotion. Thus, primates 
breathe in instead of out, when poking fun at their fellow primates.

Computational Humor

A computational approach to humor is a much more recent 
development, yet it has already produced its own modest his-
tory. Beginning in the 1990s, computer scientists attempted at 
understanding, and moreover producing humor automatically. 
Developments in machine learning made it possible to imagine an 
algorithm that could take in examples of humor and to try uncover 
their inner pattern. HAHAcronym14 was one of the first examples 
of the development of a humor-generation focused system, which 
aimed to produce humorous acronyms. In the mid 2000s, Twitter 
proved to be a useful platform for such investigations, due to its 
ease of access and its inclusion of ready-made initial classifications 
(e.g. hash-tags). Barbieri and Saggion utilized the popular social 
network to detect irony3, while Yishay Raz focused on automatic 
classification of types of humor12, such as anecdotes, fantasy, insult, 
irony, etc. Some of these computational approaches referenced the 
voluminous traditional thinking of humor, presented above2. There 
was also much work done for the understanding and assessment of 
visual humor. In 2015, Shahaf et al. joined Bob Mankoff, cartoon 
editor of the New Yorker, to build a system that would be able to 
predict which one of the +5,000 weekly submissions to the news-
paper’s cartoon caption competition is the funniest one13. These 
attempts and more have all been interesting and illuminating, but 
proved to have a limited amount of success. There is clearly much 
more to be done to achieve a more accurate understanding of what 
makes things funny and how we can “teach” humor to computers.

Increments to our knowledge of humor are gradual and mod-
est, being a difficult task as it is, and yet there are more and more 
indications as to the potential of such investigations. In an attempt 
to add to the existing corpus of computational humor literature and 
experimentation, this thesis focuses on generating literal humor, 
through an examination of Google’s word2vec word embedding. In 
particular, we will examine humorous 4-word analogies generated 
based on the embedding’s representation of words.

Word Embeddings

For this literal approach to the composition of humorous 4-word 
analogies, we took advantage of the existing and relatively new 
technology of neural word embeddings, and in particular Google’s 
word2vec, which opened to public usage in 2013119. Using a neu-
ral net trained on instances of Google news articles containing 3 

billion running words, Google’s machine learning engineers were 
able to create an embedding of 3 billion words mapped into vec-
tors of 300 dimensions. The vectors are learned representations of 
the words in the training text corpus, which were crafted using 
continuous bag-of-words and skip-gram architectures. A neural 
net is trained to predict a word for the words that appear close by 
in the text, and the parameters learned by it are used as these word 
representations. In fact, a semantic field is created, such that words 
that tend to appear closer across the training texts appear closer 
to each other in this multidimensional space as well. The resulting 
vectors thus capture relations between words in the underlying 
training data, such as which words are similar to each other (and 
thus are ’neighbors’ in the semantic space) and allow us to complete 
analogies that capture the relations between pairs of words (such 
as Paris:France::Rome:Italy). These resulting vectors can therefore 
be used as features when training models in various natural lan-
guage processing and machine learning applications. For example, 
through word2vec, Bolukbasi et al. uncovered gender biases in the 
underlying embedding6. In this study, analogies such as 

Man : Computer programmer :: Woman : homemaker 
were automatically created after taking the cross product and Euclid-
ean distance measures of vector representation of single words, pairs 
and quadruples. We decided to utilize this approach to study the 
humorous nature of association of words. If word embeddings can 
uncover gender biases, why can they not uncover funniness of words 
and combinations of phrases?

Linear regression and SVM classification

This paper had three main goals: to generate humorous analogies, 
to predict ratings of humorous analogies and to perform a Turing test 
to assess our results. In order to achieve them, it focuses on binary 
classification of words and analogies into “funny” and “not funny” 
categories, and on linear regression to generate prediction of “fun-
niness” scores, based on ratings given by Amazon Mechanical Turk 
users. Following is a brief explanation of these two methods, meant 
to dispel the magical nature of machine learning as a “buzz word.”

SVM classification

Once we had our data organized as numerical values, that rep-
resent features of different objects (provided by word2vec, in our 
case), we could train a classification model. Our approach required 4 
different classifiers, which created somewhat of a “cascading” effect. 
SVM classifiers fit a linear classification separator between groups 
of data that have certain labels. In most tasks of binary classifica-
tion, they are used to separate positive from negative examples. Our 
case was no different – we tried to separate positive funny examples 
from unfunny examples. The separator is fitted such that the least 
data points will be misclassified (having the opposite label than 
the desired one). SVMs, or support vector machines, are unique 
in their definition of a decision boundary which has a desired 
margin. In a classification problem treated with an SVM, we look 
at the points that are closest to the hyperplane as support vector 
(hence, the name). The certainty of a classification of a data point 
can be determined by its distance from the hyperplane (the farthest 
it is, the more certain the classification).5 Thus, the best possible 
hyperplane we could fit is the one that maximizes the distance of 
the closest points (or SVs) to the hyperplane. A basic hyperplane 
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can be defined as

The goal is to fit the classifier with lowest loss rate, where labels 
of the classification itself will be described as 1 if h(x; w, w0) > 0 or 
-1 otherwise, and in our case as funny if h(x; w, w0) > 0 or unfunny 
if h(x; w, w0) < 0. When determining the weight vector w we will 
try to maximize the distance of the closest points, the support vec-
tors, from the hyperplane, on both sides, while still maintaining a 
correct classification. To find the optimal hyperplane we will need 
to minimize the following expression:

Linear Regression (Ridge)

The regression task was done with ridge regression, where a 
linear function was fitted to predict the scores (y axis) to match a 
data point, represented by the numerical value associated with a 
4-tuple. The following is the definition of the regression1:

And the loss function we aim to minimize is defined as:

Where X is our features matrix (aka the featurized data), w is the 
weight chosen for the production of the regression line, w0 is the 
included bias terms and λ is the ridge regularization parameter. h 
is therefore the function for a prediction generation. The generation 
and rating process discussed in this thesis uses these two ideas from 
machine learning theory5.

The implementation was made possible through the python 
library scikit-learn7, which offers great support in putting machine 
learning theories into practice, and into actual predictions and 
classification models.

Contribution

In this project we furthered the understanding of humor and the 
capabilities of producing it “on demand”. There are various benefits 
to the development of artificial humor capabilities:

1. Allowing the creation of smoother, more fun interfaces 
to use, which will surely play an even greater role in our lives in 
the coming years. Systems which include humorous components 
could be more congenial: making queries, tasks and warnings less 
repetitive, statements of ignorance more acceptable and error mes-
sages less patronizing4.

2. Facilitating a better understanding of humor itself, by 
asserting or disproving notions of what makes things funny.

3. Overcoming yet another interesting artificial intelligence 
challenge posed to computer science researchers.

To the best of our knowledge, there has been no attempt 
to use our newly gained understanding of word embeddings 
in the field of computational humor. Furthermore, there has 
been limited success in previous attempts of humor generation 
tasks. This is yet another attempt at providing a proof of con-
cept, for future research. This paper shows that computers can 
not only construct a humorous structure, but also recognize 
humorous themes relatively well, implying that it might have 

implications on a fuller understanding of what makes things funny.

Joking Around, or, Learning to Generate Funny 
Analogies

Our main goal was to show that humorous analogies can be 
generated based on the word embedding word2vec. We started 
from any random combination of 4 words, and tried to later gener-
ate funny 4-tuples. In the process, we trained 3 different classifiers, 
which match the 3 phases of generation:

1. 4 random words → 4 funny words. To start building our 
data set we asked Amazon Mechanical Turk users to come up with 
to 5 humorous analogies on any topic, and created an initial pool 
of about 1000 human written analogies. We then asked other users 
to rate those analogies, in the following manner: each participant 
was asked to indicate whether a batch of 25 analogies was funny 
or not (such that they could provide a single up-vote for each joke 
they found funny). Each batch of analogies was rated by 10 differ-
ent participants, for a total of about 1200 analogies rated (1000 of 
them human written; around 200 were analogies we found funny, 
presented as a check, to make sure raters won’t tire of repetitive 
analogies which might not be funny, and thus affect the quality of 
their rating). Since the score range of an analogy is between 0-10, 
and the average rating for analogy was around 2.5, we concluded 
an analogy had to gain 4 or more votes to be considered as funny. 
Next, we trained a classifier which treated as positive examples 
all the words that were used by AMT users in analogies they have 
written, and later were rated highly by their colleagues. The word 
embedding was used to obtain words representing the positive and 
negative examples, and to draw new words on which we fitted the 
classifier. Then, we could pull new words that were classified as 
funny, to create our collection of funny words.

We decided to treat each of the words from funny-rated analo-
gies as ”funny” in itself for our initial classification, as we knew 
we needed a starting point for this demanding task. The negative 
examples were any word from the embedding, including verbs, 
generic names or propositions, which tend to be less likely to be 
part of a joke. We needed to create an initial collection of words 
that had a significant likelihood of appearing in a funny analogy. 
Thus, in a liberal yet effective manner, was treated all words already 
mentioned in funny analogies as having higher likelihood of appear-
ing in jokes, and thus as generally ”funny words”.

2. 4 funny words → pairs of words. We made a new classifier 
to generate potentially funny pairs of words, from the pool of funny 
words. We trained another SVM model, and used the length of each 
word and the angle and distance between the vector representation 
of the words as features. After tuning the hyper-parameters of the 
model, we managed to classify quality pairs, using pairs from the 
Turkers analogies as positive examples, and random pairing of 
funny words as negative examples.

3. Generated pairs → classified matching of pairs. As a final 
stage in this cascading process, we trained a final SVM to tell the 
difference between random pairing of the 2-tuples and good pair-
ings, which have an appropriate affinity between their first and 
second halves. The pairs we were using to create these full 4-word 
analogies were the generated pairs of the previous phase, and the 
features used were a combined 1200 dimension vector, made up of 
each words word2vec representation, as well as the distance and 
angle between the pairs. The Positive examples for training were, 
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as expected, the full 4-tuple analogies rated funny among the AMT 
users, and the negative examples were random pairing of pairs 
generated in the last round.

Through this iterative yet evolving process, we managed to gen-
erate new analogies that could have now be put to the test of AMT 
users. The task that was presented to them was identical to the 
original rating task described above, with the sole difference that the 
analogies now presented were computer generated. We decided to 
use the following baselines (each consisting of 300 analogies tested) 
for our analysis, so that we could assess the progres-

sion of this method, one step at a time:
•  4-tuples of completely random 4 words from the embedding
•   4-tuples of funny words from the pool generated by classifier 1.
•  2-tuples of randomly matched generate pairs by classifier 2.
•  AMT made analogies.

Results

Let us compare these 5 results (including the complete, newly 
generated analogies, made using classifier 3):

Comparing the top ranked jokes can also give us a sense of what 
the trend looks like. Among the different baselines, the most highly 
rated score achieved was a 5, for the analogy

woman : jungle :: hair : fathers
which belonged to the random pairs. Here are a few examples, 
with their corresponding scores, per each baseline:

1. Random-4 – the highest score was a 3, given to 10 analo-
gies out of 300. Among them were

store shelves : shipyards :: NZX : Bowl Championship
renewed : knives :: policies : attempt

implementations : socializing :: overspending : fix.
2. Random-4-fun – the highest score was a 4, given to two 

analogies:
meal : metamphetamine :: disillusioned : Hendrix

bishop : appalled :: Australians : thermostat.
The first round of classification demonstrate a pretty good 

understanding of the kind of themes that drive humorous analo-
gies, including references to pop culture, nationalities, religion, 
food and drugs. Other references that showed up in the pool were 
related to sex, family, animals (mostly dogs and cats) and sports.

3. Random-pairs – the random pairs baseline results showed 
a single analogy that was rated at 5, and a couple that were rated as 
4. The 5-rated was

woman : jungle :: hair : fathers
and the next two, rated at 4, were

stunt : governor :: petty : sex
ass : dems :: poodles : This.

Although most pairs seem promising, their combination is ran-
dom, and therefore

requires further classification. 
Now let us examine the case of the fully classified analogies 

(following the 3-step process described above). The highest ratings 
given were 7s and 6s: the most highly rated analogy was

water : Kardashians :: toilet : Reality TV
and a few 6ers were

bear : diamonds :: Trump : empathy
barking dog : McCain :: burglar : Vanilla Ice.

More results are summarized in Table 2.2.

Figure 2.1: Genera on process schema

Figure 2.2: Average funniness scores for each baseline: random 4-tuples 
(rand-4), random 4-tuple of funny words (rand-4-fun), randomly matched 
classified pairs (rand-pairs) and fully generated pairs (GEN).

Figure 2.3: Average funniness scores for fully generated pairs (GEN) versus 
Average funniness scores for Amazon mechanical Turk users written analogies 
(AMT).
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Regression Towards a Laugh, or, How to Rate Funny 
Analogies

Predicting ratings AMT users would give to analogies (based 
on the same procedure that was described in the previous chapter) 
is another approach we could take to assess the types of humor 
understanding we can capture. Given an initial set of analogies and 
ratings provided by AMT users, we can define a regression line that 
would enable us to predict the scoring of a newly given analogy. The 
goal is to pick such a regression line y(x), such that the expected 
value of the loss will be minimized. For a more robust explanation 
of the training of such a model, please refer back to the section 1.4.2.

In our case, we started fitting the line with the data points rep-
resenting the analogies given by AMT users, and using the ratings 
given by other AMT users as the data labels t. After tuning the 
weights in such a manner, we used the fitted regression line to 
predict the scores of new analogies generated by our system. The 
features for the regression were a 1200-dimension vector, the result 
of a concatenation of the word2vec 300-dimensions vector of each 
word. We chose ridge regression, which can lead to a sparse model 
that will be less likely to over-fit than a basic linear regression, and 
thus generalize better to new data points.

Our results showed positive correlation between our predic-
tions and the scores which were eventually given by Turkers to 
our generated analogies (computer-generates ones). We per-
formed a cross-validation, a technique which further helps us 

avoid over-fitting. To that aim, we separated the data to train and 
test sets (in our case, for a total of 5 groups) and could tune the 
hyper-parameters of the model without affecting the quality of our 
predictions, by modeling the noise in the training data so closely 
that it will negatively affect our accuracy for new data points. We 
chose a lambda value of 10 after performing a search for the value 
that will minimize the loss, and ran the regression. The results of 
this cross validation were giving a mean correlation score, between 
prediction and actual scores, of around 0.371 with a standard devia-
tion of +/-0.038, for a 5-fold partition.

Though this positive correlation might be lower than we would 
aim for in typical regression, humor requires a different scale of 
assessment. Humor cannot be objectively agreed upon by differ-
ent humans, let alone by a computational approach. Therefore, a 
positive correlation of 0.37 attests to an ability to predict scores of 
jokes in a satisfactory manner – one which performs much better 
than a random assignment of score predictions.

Comedy of Errors, or Applying the Turing Test to Our 
Jokes

Since the topic of this thesis is a machine learning question that 
is flirting with Artificial Intelligence, trying to make a machine 
“learn” a task that is deep within the realm of what humans define 
as intelligence. This chapter explores whether it is possible to fool 
humans into thinking some of the generated jokes were human 

Table 2.2: Breakdown of funniness ratings by type of baseline
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made (and vice versa). To achieve this goal, we created another 
Amazon Mechanical Turk task which consisted of 69 analogies – 
half were computer generated and half were human made. We chose 
the 35 highest rated human-made analogies and the 34 highest 
rated computer-made ones, to make sure that all analogies were 
in fact relatively successful jokes, which would make the turing 
test more focused on the humor aspect of this project, rather than 
the logical quality of the analogies. As a result, we could also keep 
the AMT users who participated in this test slightly more amused. 
We asked 10 participants to mark whether each of them was, to the 
best of their assessment, the work of a computer or a human. We 
then took a majority vote of the 10 users – each vote for “human” 
was considered as 1, and each vote for “computer” was considered 
as -1 (if no choice was made by a user, we considered it as a 0 vote). 
Then, if an overall score was positive the analogy was considered 
as human-made by the majority vote, and vice versa was consid-
ered as computer-made if the obtained score was negative. Mostly, 
AMT users were pretty successful at predicting the identity of the 
generator. However, out of 69 analogies, AMT users failed to clas-
sify correctly 19 of them, for an error rate of 27.5%. Overall, 12 
computer-generated analogies were thought of as human-made by 
a majority vote of 10 users, and 7 human-made were mistaken for 
computer-generated ones.

Our generated analogies were mostly recognizable as computer-
made. Yet, it provided evidence that this Turing test was far from 
trivial – out of 35 computer-made analogies, 12 were mistaken for 
a human-made analogy – a significant rate of 35%. The error rate 
of mistaking a human analogy to be a computer generated one was 
20%, both quite surprising for a task that initially sounds rather 
intuitive.

Conclusion

In this thesis, we have shown how new word embedding tech-
niques can be used for the enhancement and advancement of the 
study of computational humor, and humor at large. We have pro-
vided a description of a process for the production of humorous 
analogies, which proved to have been more successful than three dif-
ferent possible baselines. We were able to generate analogies which 
were rated as funny by AMT users, who did not know the analogies 
were produced by a computer. Furthermore, we have shown that 
there is a positive correlation between our predictions and scores 
AMT users will provide to analogies. Finally, we performed a Turing 
test, in which users were asked to identify whether certain analogies 
were made by humans or by a computer program. In doing so, users 
were unable to identify 35% of the computer generated analogies.

After showing a “proof of concept” in the form described above, 
this thesis further opens the door for enlarging the capabilities 
of this humor-generating system. Our current system seems to 
be doing a good job at recognizing themes and generals imager-
ies which are favorable to humor creation. We can recognize it 
in the significant spike in the “funniness” of our analogies, past 
our random-4-funny-classifier, and by the milder improvements 
presented by the rest of the classifiers which are involved in our 
cascading humor generation system.

However, a lot more can be done to put together the success-
ful pieces we identified. We can assert that marriage, family, sex, 
religion, politics and food are topics favorable to humor, and that 
verbs are less likely to be used by our classifiers. Yet, we can do 
more to combine the words in an analogy that truly captures a 
good joke. For example, using solely qualitative assessments, it 

Table 4.1: Table of Confusion: Turing test full results

Table 4.2: Examples of misclassified jokes in an AMT Turing test, separated by kind of mistake.
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seems that the fourth word can have a great effect on the cohesive-
ness of a humorous analogy in the same way that a punch-line is 
qualitatively assessed by stand-up comedians to “make or break” 
a typical joke. Therefore, here are a few further steps we would like 
to take in the future:

1. Train a “punchline” classifier, to produce better analo-
gies, and once again assert, in a quantitative manner, a well-known 
qualitative notion in the world of comedy.

2. Train a classifier to recognize the optimal ordering of an 
analogy. For example, the analogy we rated in the first chapter

twitter : Christmas :: Hitler : Santa
could arguably sound better if written in a different ordering, i.e.

Christmas: Santa:: Twitter: Hitler.
We could train a classifier based on orderings of recognized 

funny analogies, using features such as the angle between the vec-
tors representing each word, pairs, and all possible pairing of the 4 
words participating in the analogy. In doing so, we should be able 
to capture this subtlety rather well, and produce even “tighter” 
analogies.

3. After the suggested improvements to the generation pro-
cess described above we can introduce a new Turing test, similar 
to the one described in chapter 4, such that we can achieve an even 
better error rate (or, as we like to think of it, “rate of confusion”). 
Eventually, a competition against professional comedians could 
give us another measure of our system’s performance.

Pursuing some of these future directions could produce funnier, 
tighter analogies, that will once again challenge our opinion on 
what computers can and cannot do.

Computer:humor::humans:humor?
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