
RESEARCH Volume 11 Issue 1 | Spring 2018
La

tin
x

St
ud

ie
s

36 | the harvard undergraduate research journal

Robbins, Liz and Nadia Rodriguez. (2017). The Gang Murders in the Suburbs.
The New York Times. https://www.nytimes.com/2017/07/12/nyregion/ms-
13-murders-long-island.html?_r=0.

Rodriguez, Ana Patricia. (2009). Dividing the Isthmus: Central American
Transnational Histories, Literatures, and Cultures. 168-171. 176. 5.

Salgado, Yesika. (2017). Corázon, 4. 63.
Stanley, William. (1984). Economic Migrants or Refugees from Violence? A

Time-Series Analysis of Salvadoran Migration to the United States. Latin
American Research Review 22, 134. 144.

Trump, Donald. (2017). Remarks by President Trump to Law Enforce-
ment Officials on MS-13. White House transcript of remarks.
h t t p s : // w w w.w h i t e h o u s e . g o v/ t h e - p r e s s - o f f i c e / 2 017/ 0 7/ 2 8 /
remarks-president-trump-law-enforcement-officials-ms-13.

U.S. Immigration and Customs Enforcement. (2017). Fiscal Year 2017 ICE
Enforcement and Removal Operations Report. 4. https://www.ice.gov/sites/
default/files/documents/Report/2017/iceEndOfYearFY2017.pdf.

Ward, T.W. (2013). Gangsters Without Borders: An Ethnography of a Salva-
doran Street Gang. 3, 13.

Zamora, Javier. (2017). Unaccompanied. 9-10.
Zamora, Javier. Unaccompanied. Port Townsend: Copper Canyon Press, 2017.

RESEARCHVolume 11 Issue 1 | Spring 2018
Com

puter
Science

 www.thur j .org | 37

Introduction

Computational Humor: What’s At Stake

With recent advance in machine learning and data science,
more and more fields that were once sealed off from computational
approaches are opening up for the touch of artificial intelligence.
Humor is one such field. Notoriously difficult to analyze, assess
and rate even for the human agent, it provides a challenge for the
adventurous computer scientists who dare to take it on. Literature
that provides analysis of the roots and causes of humor has been
circulating at least since ancient Greece, with the following major
theories presented to date10:

1. Superiority theory. The superiority theory of humor states
that the feeling of selfcontainment associated with a sense of superi-
ority in our status or well being over others is what makes us laugh.
In other words, we laugh when we are better off than a fellow human,
and our assertion of this fact. Notable philosophers proposed and
bolstered this assumption, an act which did not help the status of
comedians and humor: they were deemed as agents of evil mockery
and pride. Among the famous supporters of this view were Plato,
Descartes, Hobbes and the Bible.

2. Incongruity theory. Scholars endorsed a more modern and
positive approach to humor was endorsed mostly since the renais-
sance. This reading of humor claims that what creates a comedic
effect is a “benign violation of expectation”8. Recent research have
shown that many types of laugh outbursts could be explained by

their surprising nature. Whenever an unexpected event happened,
that turned out to be harmless – amusement was afoot. Two condi-
tions had to be met to create humor:

(a) an incongruity, which first took an audience by surprise,
perhaps even a tense, fearful one.

(b) a resolution of the contradiction of expectation had to
happen, followed by relief, which had a vocal manifestation, of the
form of “Ha Ha”, accompanied with an upward twitch of the lips.

Among the supporters of this understanding are James Beattie,
Immanuel Kant, Arthur Schopenhauer and Søren Kierkegaard.

3. Stress release theory. Along the lines of the relief theme
proposed by the “incongruists”, Sigmond Freud proposed a similar
reading into humor, with a typical Freudian twist. To Freud, humor
was a result of pent up stresses, many of whom related to societally
taboo subjects, such as sexuality and violence, that are released
when a joke teller refers to them directly or as an innuendo. By
“opening for a conversation” a subject the listener has been putting
active effort to suppress, a joke can signify a promise of relief, an
appeasing statement, an “it’s OK” signal. It tells the listener oth-
ers are contemplating and suppressing the same topics, and offers
an opportunity to vent some of these accumulated suppressions.
Lord Shaftesbury, Herbert Spencer and John Dewey also adopted
a biological-psychological reading into humor as a stress reliever.

4. Mock-A ression play theory. From a biological-evolution-
ary point of view, laughter can be explained by its predecessors in
primates. Observations by evolutionary biologists revealed that
primates laugh too, usually during mock-aggression activity within

Just for laughs: Utilizing Machine Learning to
Rate and Generate Humorous Analogies

Limor Gultchin
Harvard College '17

This thesis aims to present a procedure for generating humorous 4-word analogies, in the form of
humans : water :: Texans : barbecue.

By using a neural word embedding, we created a system that can construct 4-tuples of words of a comedic nature, based on
an initial pool of funny analogies, written and rated by Amazon Mechanical Turk (AMT) users. Our procedure involved
4 main steps:
 1. Generating a collection of “funny words”, by classifying with a support vector machine (SVM) words from
 the embedding that are similar to words used in the analogies written by AMT users.
 2. Generating funny pairs of words taken from the collection of funny words, and classifying them to obtain
 more likely funny words. Negative examples were randomly generated pairs from the embedding, and positive
 examples were pairs from the AMT users’ analogies.
 3. Generating matchings of generated pairs by another SVM classifier. Negative examples were random 4-tuples
 of words from the embedding; positive examples were complete humorous analogies obtained from AMT.
Our method was shown to perform significantly better than the following baselines:
 • random 4 tuples of words from the embedding
 • random 4 tuples of words from the “funny pool” of words we classified
 • random matching of funny pairs we generated.
We assessed the performance in terms of the mean scores obtained per analogy in each baseline, and in terms of maxi-
mum funniness score obtained in each category (7/10 fully-computer generated, 5/10 random match of pairs, 4/10 random
”funny” words and 3/10 random words). To further establish the usefulness of neural word embeddings to capture humor
and generate comedic structures, we introduced a ”funniness” score prediction which showed positive correlation with
actual ratings obtained from AMT users, and performed a Turing test, in which 35% of computer-generated analogies
were mistaken to be human made.

RESEARCH Volume 11 Issue 1 | Spring 2018
Co

m
pu

te
r

Sc
ie

nc
e

38 | the harvard undergraduate research journal

a family of chimpanzees. Mock-aggression activity can be seen when
members of the same family of monkeys are engaged in playing,
that to an outside observer might look like a violent confrontation.
When two or more such primates are “fighting” in this way, like
children who are engaged in a mock-fight, they seem to be train-
ing for actual potential future conflicts, yet need to signify to each
other that they are not being truly aggressive. The chosen signals
are usually a quick, fast breath of air coming from the diaphragm
and a movement of the mouth, in which the front teeth are exposed
and the lips are drawn back and upwards. The sound this mock-
aggressive signal is making is “ah ah”, which resembles human
laughter, only in a backward direction: primates’ diaphragm is
set up a little differently than that of humans (or rather the other
way around?), to allow for appropriate locomotion. Thus, primates
breathe in instead of out, when poking fun at their fellow primates.

Computational Humor

A computational approach to humor is a much more recent
development, yet it has already produced its own modest his-
tory. Beginning in the 1990s, computer scientists attempted at
understanding, and moreover producing humor automatically.
Developments in machine learning made it possible to imagine an
algorithm that could take in examples of humor and to try uncover
their inner pattern. HAHAcronym14 was one of the first examples
of the development of a humor-generation focused system, which
aimed to produce humorous acronyms. In the mid 2000s, Twitter
proved to be a useful platform for such investigations, due to its
ease of access and its inclusion of ready-made initial classifications
(e.g. hash-tags). Barbieri and Saggion utilized the popular social
network to detect irony3, while Yishay Raz focused on automatic
classification of types of humor12, such as anecdotes, fantasy, insult,
irony, etc. Some of these computational approaches referenced the
voluminous traditional thinking of humor, presented above2. There
was also much work done for the understanding and assessment of
visual humor. In 2015, Shahaf et al. joined Bob Mankoff, cartoon
editor of the New Yorker, to build a system that would be able to
predict which one of the +5,000 weekly submissions to the news-
paper’s cartoon caption competition is the funniest one13. These
attempts and more have all been interesting and illuminating, but
proved to have a limited amount of success. There is clearly much
more to be done to achieve a more accurate understanding of what
makes things funny and how we can “teach” humor to computers.

Increments to our knowledge of humor are gradual and mod-
est, being a difficult task as it is, and yet there are more and more
indications as to the potential of such investigations. In an attempt
to add to the existing corpus of computational humor literature and
experimentation, this thesis focuses on generating literal humor,
through an examination of Google’s word2vec word embedding. In
particular, we will examine humorous 4-word analogies generated
based on the embedding’s representation of words.

Word Embeddings

For this literal approach to the composition of humorous 4-word
analogies, we took advantage of the existing and relatively new
technology of neural word embeddings, and in particular Google’s
word2vec, which opened to public usage in 2013119. Using a neu-
ral net trained on instances of Google news articles containing 3

billion running words, Google’s machine learning engineers were
able to create an embedding of 3 billion words mapped into vec-
tors of 300 dimensions. The vectors are learned representations of
the words in the training text corpus, which were crafted using
continuous bag-of-words and skip-gram architectures. A neural
net is trained to predict a word for the words that appear close by
in the text, and the parameters learned by it are used as these word
representations. In fact, a semantic field is created, such that words
that tend to appear closer across the training texts appear closer
to each other in this multidimensional space as well. The resulting
vectors thus capture relations between words in the underlying
training data, such as which words are similar to each other (and
thus are ’neighbors’ in the semantic space) and allow us to complete
analogies that capture the relations between pairs of words (such
as Paris:France::Rome:Italy). These resulting vectors can therefore
be used as features when training models in various natural lan-
guage processing and machine learning applications. For example,
through word2vec, Bolukbasi et al. uncovered gender biases in the
underlying embedding6. In this study, analogies such as

Man : Computer programmer :: Woman : homemaker
were automatically created after taking the cross product and Euclid-
ean distance measures of vector representation of single words, pairs
and quadruples. We decided to utilize this approach to study the
humorous nature of association of words. If word embeddings can
uncover gender biases, why can they not uncover funniness of words
and combinations of phrases?

Linear regression and SVM classification

This paper had three main goals: to generate humorous analogies,
to predict ratings of humorous analogies and to perform a Turing test
to assess our results. In order to achieve them, it focuses on binary
classification of words and analogies into “funny” and “not funny”
categories, and on linear regression to generate prediction of “fun-
niness” scores, based on ratings given by Amazon Mechanical Turk
users. Following is a brief explanation of these two methods, meant
to dispel the magical nature of machine learning as a “buzz word.”

SVM classification

Once we had our data organized as numerical values, that rep-
resent features of different objects (provided by word2vec, in our
case), we could train a classification model. Our approach required 4
different classifiers, which created somewhat of a “cascading” effect.
SVM classifiers fit a linear classification separator between groups
of data that have certain labels. In most tasks of binary classifica-
tion, they are used to separate positive from negative examples. Our
case was no different – we tried to separate positive funny examples
from unfunny examples. The separator is fitted such that the least
data points will be misclassified (having the opposite label than
the desired one). SVMs, or support vector machines, are unique
in their definition of a decision boundary which has a desired
margin. In a classification problem treated with an SVM, we look
at the points that are closest to the hyperplane as support vector
(hence, the name). The certainty of a classification of a data point
can be determined by its distance from the hyperplane (the farthest
it is, the more certain the classification).5 Thus, the best possible
hyperplane we could fit is the one that maximizes the distance of
the closest points (or SVs) to the hyperplane. A basic hyperplane

RESEARCHVolume 11 Issue 1 | Spring 2018
Com

puter
Science

 www.thur j .org | 39

can be defined as

The goal is to fit the classifier with lowest loss rate, where labels
of the classification itself will be described as 1 if h(x; w, w0) > 0 or
-1 otherwise, and in our case as funny if h(x; w, w0) > 0 or unfunny
if h(x; w, w0) < 0. When determining the weight vector w we will
try to maximize the distance of the closest points, the support vec-
tors, from the hyperplane, on both sides, while still maintaining a
correct classification. To find the optimal hyperplane we will need
to minimize the following expression:

Linear Regression (Ridge)

The regression task was done with ridge regression, where a
linear function was fitted to predict the scores (y axis) to match a
data point, represented by the numerical value associated with a
4-tuple. The following is the definition of the regression1:

And the loss function we aim to minimize is defined as:

Where X is our features matrix (aka the featurized data), w is the
weight chosen for the production of the regression line, w0 is the
included bias terms and λ is the ridge regularization parameter. h
is therefore the function for a prediction generation. The generation
and rating process discussed in this thesis uses these two ideas from
machine learning theory5.

The implementation was made possible through the python
library scikit-learn7, which offers great support in putting machine
learning theories into practice, and into actual predictions and
classification models.

Contribution

In this project we furthered the understanding of humor and the
capabilities of producing it “on demand”. There are various benefits
to the development of artificial humor capabilities:

1. Allowing the creation of smoother, more fun interfaces
to use, which will surely play an even greater role in our lives in
the coming years. Systems which include humorous components
could be more congenial: making queries, tasks and warnings less
repetitive, statements of ignorance more acceptable and error mes-
sages less patronizing4.

2. Facilitating a better understanding of humor itself, by
asserting or disproving notions of what makes things funny.

3. Overcoming yet another interesting artificial intelligence
challenge posed to computer science researchers.

To the best of our knowledge, there has been no attempt
to use our newly gained understanding of word embeddings
in the field of computational humor. Furthermore, there has
been limited success in previous attempts of humor generation
tasks. This is yet another attempt at providing a proof of con-
cept, for future research. This paper shows that computers can
not only construct a humorous structure, but also recognize
humorous themes relatively well, implying that it might have

implications on a fuller understanding of what makes things funny.

Joking Around, or, Learning to Generate Funny
Analogies

Our main goal was to show that humorous analogies can be
generated based on the word embedding word2vec. We started
from any random combination of 4 words, and tried to later gener-
ate funny 4-tuples. In the process, we trained 3 different classifiers,
which match the 3 phases of generation:

1. 4 random words → 4 funny words. To start building our
data set we asked Amazon Mechanical Turk users to come up with
to 5 humorous analogies on any topic, and created an initial pool
of about 1000 human written analogies. We then asked other users
to rate those analogies, in the following manner: each participant
was asked to indicate whether a batch of 25 analogies was funny
or not (such that they could provide a single up-vote for each joke
they found funny). Each batch of analogies was rated by 10 differ-
ent participants, for a total of about 1200 analogies rated (1000 of
them human written; around 200 were analogies we found funny,
presented as a check, to make sure raters won’t tire of repetitive
analogies which might not be funny, and thus affect the quality of
their rating). Since the score range of an analogy is between 0-10,
and the average rating for analogy was around 2.5, we concluded
an analogy had to gain 4 or more votes to be considered as funny.
Next, we trained a classifier which treated as positive examples
all the words that were used by AMT users in analogies they have
written, and later were rated highly by their colleagues. The word
embedding was used to obtain words representing the positive and
negative examples, and to draw new words on which we fitted the
classifier. Then, we could pull new words that were classified as
funny, to create our collection of funny words.

We decided to treat each of the words from funny-rated analo-
gies as ”funny” in itself for our initial classification, as we knew
we needed a starting point for this demanding task. The negative
examples were any word from the embedding, including verbs,
generic names or propositions, which tend to be less likely to be
part of a joke. We needed to create an initial collection of words
that had a significant likelihood of appearing in a funny analogy.
Thus, in a liberal yet effective manner, was treated all words already
mentioned in funny analogies as having higher likelihood of appear-
ing in jokes, and thus as generally ”funny words”.

2. 4 funny words → pairs of words. We made a new classifier
to generate potentially funny pairs of words, from the pool of funny
words. We trained another SVM model, and used the length of each
word and the angle and distance between the vector representation
of the words as features. After tuning the hyper-parameters of the
model, we managed to classify quality pairs, using pairs from the
Turkers analogies as positive examples, and random pairing of
funny words as negative examples.

3. Generated pairs → classified matching of pairs. As a final
stage in this cascading process, we trained a final SVM to tell the
difference between random pairing of the 2-tuples and good pair-
ings, which have an appropriate affinity between their first and
second halves. The pairs we were using to create these full 4-word
analogies were the generated pairs of the previous phase, and the
features used were a combined 1200 dimension vector, made up of
each words word2vec representation, as well as the distance and
angle between the pairs. The Positive examples for training were,

RESEARCH Volume 11 Issue 1 | Spring 2018
Co

m
pu

te
r

Sc
ie

nc
e

40 | the harvard undergraduate research journal

as expected, the full 4-tuple analogies rated funny among the AMT
users, and the negative examples were random pairing of pairs
generated in the last round.

Through this iterative yet evolving process, we managed to gen-
erate new analogies that could have now be put to the test of AMT
users. The task that was presented to them was identical to the
original rating task described above, with the sole difference that the
analogies now presented were computer generated. We decided to
use the following baselines (each consisting of 300 analogies tested)
for our analysis, so that we could assess the progres-

sion of this method, one step at a time:
• 4-tuples of completely random 4 words from the embedding
• 4-tuples of funny words from the pool generated by classifier 1.
• 2-tuples of randomly matched generate pairs by classifier 2.
• AMT made analogies.

Results

Let us compare these 5 results (including the complete, newly
generated analogies, made using classifier 3):

Comparing the top ranked jokes can also give us a sense of what
the trend looks like. Among the different baselines, the most highly
rated score achieved was a 5, for the analogy

woman : jungle :: hair : fathers
which belonged to the random pairs. Here are a few examples,
with their corresponding scores, per each baseline:

1. Random-4 – the highest score was a 3, given to 10 analo-
gies out of 300. Among them were

store shelves : shipyards :: NZX : Bowl Championship
renewed : knives :: policies : attempt

implementations : socializing :: overspending : fix.
2. Random-4-fun – the highest score was a 4, given to two

analogies:
meal : metamphetamine :: disillusioned : Hendrix

bishop : appalled :: Australians : thermostat.
The first round of classification demonstrate a pretty good

understanding of the kind of themes that drive humorous analo-
gies, including references to pop culture, nationalities, religion,
food and drugs. Other references that showed up in the pool were
related to sex, family, animals (mostly dogs and cats) and sports.

3. Random-pairs – the random pairs baseline results showed
a single analogy that was rated at 5, and a couple that were rated as
4. The 5-rated was

woman : jungle :: hair : fathers
and the next two, rated at 4, were

stunt : governor :: petty : sex
ass : dems :: poodles : This.

Although most pairs seem promising, their combination is ran-
dom, and therefore

requires further classification.
Now let us examine the case of the fully classified analogies

(following the 3-step process described above). The highest ratings
given were 7s and 6s: the most highly rated analogy was

water : Kardashians :: toilet : Reality TV
and a few 6ers were

bear : diamonds :: Trump : empathy
barking dog : McCain :: burglar : Vanilla Ice.

More results are summarized in Table 2.2.

Figure 2.1: Genera on process schema

Figure 2.2: Average funniness scores for each baseline: random 4-tuples
(rand-4), random 4-tuple of funny words (rand-4-fun), randomly matched
classified pairs (rand-pairs) and fully generated pairs (GEN).

Figure 2.3: Average funniness scores for fully generated pairs (GEN) versus
Average funniness scores for Amazon mechanical Turk users written analogies
(AMT).

RESEARCHVolume 11 Issue 1 | Spring 2018
Com

puter
Science

 www.thur j .org | 41

Regression Towards a Laugh, or, How to Rate Funny
Analogies

Predicting ratings AMT users would give to analogies (based
on the same procedure that was described in the previous chapter)
is another approach we could take to assess the types of humor
understanding we can capture. Given an initial set of analogies and
ratings provided by AMT users, we can define a regression line that
would enable us to predict the scoring of a newly given analogy. The
goal is to pick such a regression line y(x), such that the expected
value of the loss will be minimized. For a more robust explanation
of the training of such a model, please refer back to the section 1.4.2.

In our case, we started fitting the line with the data points rep-
resenting the analogies given by AMT users, and using the ratings
given by other AMT users as the data labels t. After tuning the
weights in such a manner, we used the fitted regression line to
predict the scores of new analogies generated by our system. The
features for the regression were a 1200-dimension vector, the result
of a concatenation of the word2vec 300-dimensions vector of each
word. We chose ridge regression, which can lead to a sparse model
that will be less likely to over-fit than a basic linear regression, and
thus generalize better to new data points.

Our results showed positive correlation between our predic-
tions and the scores which were eventually given by Turkers to
our generated analogies (computer-generates ones). We per-
formed a cross-validation, a technique which further helps us

avoid over-fitting. To that aim, we separated the data to train and
test sets (in our case, for a total of 5 groups) and could tune the
hyper-parameters of the model without affecting the quality of our
predictions, by modeling the noise in the training data so closely
that it will negatively affect our accuracy for new data points. We
chose a lambda value of 10 after performing a search for the value
that will minimize the loss, and ran the regression. The results of
this cross validation were giving a mean correlation score, between
prediction and actual scores, of around 0.371 with a standard devia-
tion of +/-0.038, for a 5-fold partition.

Though this positive correlation might be lower than we would
aim for in typical regression, humor requires a different scale of
assessment. Humor cannot be objectively agreed upon by differ-
ent humans, let alone by a computational approach. Therefore, a
positive correlation of 0.37 attests to an ability to predict scores of
jokes in a satisfactory manner – one which performs much better
than a random assignment of score predictions.

Comedy of Errors, or Applying the Turing Test to Our
Jokes

Since the topic of this thesis is a machine learning question that
is flirting with Artificial Intelligence, trying to make a machine
“learn” a task that is deep within the realm of what humans define
as intelligence. This chapter explores whether it is possible to fool
humans into thinking some of the generated jokes were human

Table 2.2: Breakdown of funniness ratings by type of baseline

RESEARCH Volume 11 Issue 1 | Spring 2018
Co

m
pu

te
r

Sc
ie

nc
e

42 | the harvard undergraduate research journal

made (and vice versa). To achieve this goal, we created another
Amazon Mechanical Turk task which consisted of 69 analogies –
half were computer generated and half were human made. We chose
the 35 highest rated human-made analogies and the 34 highest
rated computer-made ones, to make sure that all analogies were
in fact relatively successful jokes, which would make the turing
test more focused on the humor aspect of this project, rather than
the logical quality of the analogies. As a result, we could also keep
the AMT users who participated in this test slightly more amused.
We asked 10 participants to mark whether each of them was, to the
best of their assessment, the work of a computer or a human. We
then took a majority vote of the 10 users – each vote for “human”
was considered as 1, and each vote for “computer” was considered
as -1 (if no choice was made by a user, we considered it as a 0 vote).
Then, if an overall score was positive the analogy was considered
as human-made by the majority vote, and vice versa was consid-
ered as computer-made if the obtained score was negative. Mostly,
AMT users were pretty successful at predicting the identity of the
generator. However, out of 69 analogies, AMT users failed to clas-
sify correctly 19 of them, for an error rate of 27.5%. Overall, 12
computer-generated analogies were thought of as human-made by
a majority vote of 10 users, and 7 human-made were mistaken for
computer-generated ones.

Our generated analogies were mostly recognizable as computer-
made. Yet, it provided evidence that this Turing test was far from
trivial – out of 35 computer-made analogies, 12 were mistaken for
a human-made analogy – a significant rate of 35%. The error rate
of mistaking a human analogy to be a computer generated one was
20%, both quite surprising for a task that initially sounds rather
intuitive.

Conclusion

In this thesis, we have shown how new word embedding tech-
niques can be used for the enhancement and advancement of the
study of computational humor, and humor at large. We have pro-
vided a description of a process for the production of humorous
analogies, which proved to have been more successful than three dif-
ferent possible baselines. We were able to generate analogies which
were rated as funny by AMT users, who did not know the analogies
were produced by a computer. Furthermore, we have shown that
there is a positive correlation between our predictions and scores
AMT users will provide to analogies. Finally, we performed a Turing
test, in which users were asked to identify whether certain analogies
were made by humans or by a computer program. In doing so, users
were unable to identify 35% of the computer generated analogies.

After showing a “proof of concept” in the form described above,
this thesis further opens the door for enlarging the capabilities
of this humor-generating system. Our current system seems to
be doing a good job at recognizing themes and generals imager-
ies which are favorable to humor creation. We can recognize it
in the significant spike in the “funniness” of our analogies, past
our random-4-funny-classifier, and by the milder improvements
presented by the rest of the classifiers which are involved in our
cascading humor generation system.

However, a lot more can be done to put together the success-
ful pieces we identified. We can assert that marriage, family, sex,
religion, politics and food are topics favorable to humor, and that
verbs are less likely to be used by our classifiers. Yet, we can do
more to combine the words in an analogy that truly captures a
good joke. For example, using solely qualitative assessments, it

Table 4.1: Table of Confusion: Turing test full results

Table 4.2: Examples of misclassified jokes in an AMT Turing test, separated by kind of mistake.

RESEARCHVolume 11 Issue 1 | Spring 2018
Com

puter
Science

 www.thur j .org | 43

seems that the fourth word can have a great effect on the cohesive-
ness of a humorous analogy in the same way that a punch-line is
qualitatively assessed by stand-up comedians to “make or break”
a typical joke. Therefore, here are a few further steps we would like
to take in the future:

1. Train a “punchline” classifier, to produce better analo-
gies, and once again assert, in a quantitative manner, a well-known
qualitative notion in the world of comedy.

2. Train a classifier to recognize the optimal ordering of an
analogy. For example, the analogy we rated in the first chapter

twitter : Christmas :: Hitler : Santa
could arguably sound better if written in a different ordering, i.e.

Christmas: Santa:: Twitter: Hitler.
We could train a classifier based on orderings of recognized

funny analogies, using features such as the angle between the vec-
tors representing each word, pairs, and all possible pairing of the 4
words participating in the analogy. In doing so, we should be able
to capture this subtlety rather well, and produce even “tighter”
analogies.

3. After the suggested improvements to the generation pro-
cess described above we can introduce a new Turing test, similar
to the one described in chapter 4, such that we can achieve an even
better error rate (or, as we like to think of it, “rate of confusion”).
Eventually, a competition against professional comedians could
give us another measure of our system’s performance.

Pursuing some of these future directions could produce funnier,
tighter analogies, that will once again challenge our opinion on
what computers can and cannot do.

Computer:humor::humans:humor?

References

[1] Alexander Rush, D. P. (2017). Linear regression and basis functions hand-
outs. Harvard University, SEAS. https://github.com/harvard-ml-courses/
cs181lectures/blob/master/03-lectures-lr.pdf.

[2] Bacciu, D., Gervasi, V., & Prencipe, G. (2016). Lol: An investigation into
cybernetic humor, or: Can machines laugh? In LIPIcs-Leibniz International
Proceedings in Informatics, volume 49: Schloss Dagstuhl-Leibniz-Zentrum
fuer Informatik.

[3] Barbieri, F. & Saggion, H. (2014). Modelling irony in twitter. In EACL (pp.
56–64).

[4] Binsted, K. et al. (1995). Using humour to make natural language interfaces
more friendly. In Proceedings of the AI, ALife and Entertainment Workshop,
Intern. Joint Conf. on Artificial Intelligence.

[5] Bishop, C. M. (2006). Pattern Recognition and Machine Learning (Informa-
tion Science and Statistics). Secaucus, NJ, USA: Springer-Verlag New York,
Inc.

[6] Bolukbasi, T., Chang, K.-W., Zou, J. Y., Saligrama, V., & Kalai, A. T. (2016).
Man is to computer programmer as woman is to homemaker? debiasing
word embeddings. In Advanc in Neural Information Processing Systems
(pp. 4349–4357).

[7] Buitinck, L., Louppe, G., Blondel, M., Pedregosa, F., Mueller, A., Grisel, O.,
Niculae, V., Prettenhofer, P., Gramfort, A., Grobler, J., Layton, R., Vander-
Plas, J., Joly, A., Holt, B., & Varoquaux, G. (2013). API design for machine
learning software: experiences from the scikit-learn project. In ECML
PKDD Workshop: Languag for Data Mining and Machine Learning (pp.
108–122).

[8] McGraw, A. P. & Warren, C. (2010). Benign violations: Making immoral
behavior funny. Psychological Science, 21(8), 1141–1149.

[9] Miháltz, M. (2016). word2vec google news code implementation.
github.

https://github.com/mmihaltz/word2vec-GoogleNews-vectors.
[10] Morreall, J. (2016). Philosophy of humor. In E. N. Zalta (Ed.), The Stanford

Encyclopedia of Philosophy. Metaphysics Research Lab, Stanford University,
winter 2016 edition.

[11] Radim Rehurek, Tomas Mikolov, G. (2013). word2vec. Google Code
Archive. https://code.google.com/archive/p/word2vec/.

[12] Raz, Y. (2012). Automatic humor classification on twitter. In Proceedings of
the 2012 Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologi : Student Research
Workshop (pp. 66– 70).: Association for Computational Linguistics.

[13] Shahaf, D., Horvitz, E., & Mankoff, R. (2015). Inside jokes: Identifying
humorous cartoon captions. In Proceedings of the 21th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining (pp.
1065–1074).: ACM.

[14] Stock, O. & Strapparava, C. (2003). Hahacronym: Humorous agents for
humorous acronyms. Humor, 16(3), 297–314.

